
Self-Collaboration Code Generation via ChatGPT

YIHONG DONG, XUE JIANG, ZHI JIN, and GE LI, Key Laboratory of High Confidence
Software Technologies (Peking University), Ministry of Education, Beijing, China and School of Computer
Science, Peking University, Beijing, China

Although large language models (LLMs) have demonstrated remarkable code-generation ability, they still
struggle with complex tasks. In real-world software development, humans usually tackle complex tasks
through collaborative teamwork, a strategy that significantly controls development complexity and enhances
software quality. Inspired by this, we present a self-collaboration framework for code generation employing
LLMs, exemplified by ChatGPT. Specifically, through role instructions, (1) Multiple LLM agents act as distinct
“experts,” each responsible for a specific subtask within a complex task; (2) Specify the way to collaborate
and interact, so that different roles form a virtual team to facilitate each other’s work, ultimately the virtual
team addresses code generation tasks collaboratively without the need for human intervention. To effectively
organize andmanage this virtual team, we incorporate software-development methodology into the framework.
Thus, we assemble an elementary team consisting of three LLM roles (i.e., analyst, coder, and tester) responsible
for software development’s analysis, coding, and testing stages. We conduct comprehensive experiments on
various code-generation benchmarks. Experimental results indicate that self-collaboration code generation
relatively improves 29.9–47.1% Pass@1 compared to the base LLM agent. Moreover, we showcase that self-
collaboration could potentially enable LLMs to efficiently handle complex repository-level tasks that are not
readily solved by the single LLM agent.

CCS Concepts: • Software and its engineering→ Software creation and management; • Computing
methodologies→ Artificial intelligence;

Additional Key Words and Phrases: Code generation, large language models, multi-agent collaboration,
software development.

ACM Reference format:
Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2024. Self-Collaboration Code Generation via ChatGPT. ACM
Trans. Softw. Eng. Methodol. 33, 7, Article 189 (September 2024), 38 pages.
https://doi.org/10.1145/3672459

Yihong Dong and Xue Jiang contributed equally to this work.
This research is supported by the National Natural Science Foundation of China under Grant Nos. 62192733, 61832009,
62192731, 62192730, and 62072007 and the Key Program of Hubei under Grant No. JD2023008.
Authors’ Contact Information: Yihong Dong, Key Laboratory of High Confidence Software Technologies (Peking Uni-
versity), Ministry of Education, Beijing, China and School of Computer Science, Peking University, Beijing, China;
e-mail: dongyh@stu.pku.edu.cn; Xue Jiang, Key Laboratory of High Confidence Software Technologies (Peking Uni-
versity), Ministry of Education, Beijing, China and School of Computer Science, Peking University, Beijing, China; e-mail:
jiangxue@stu.pku.edu.cn; Zhi Jin, Key Laboratory of High Confidence Software Technologies (Peking University), Ministry
of Education, Beijing, China and School of Computer Science, Peking University, Beijing, China; e-mail: zhijin@pku.edu.cn;
Ge Li (Corresponding author), Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Ed-
ucation, Beijing, China and School of Computer Science, Peking University, Beijing, China; e-mail: dongyh@stu.pku.edu.cn.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1557-7392/2024/9-ART189
https://doi.org/10.1145/3672459

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

https://orcid.org/0000-0001-6228-4019
https://orcid.org/0000-0002-5317-865x
https://orcid.org/0000-0003-1087-226x
https://orcid.org/0000-0002-5828-0186
https://doi.org/10.1145/3672459
mailto:permissions@acm.org
https://doi.org/10.1145/3672459
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3672459&domain=pdf&date_stamp=2024-09-27

189:2 Y. Dong et al.

1 Introduction
Code generation aims to generate code that satisfies human requirements expressed in the form of
some specification. Successful code generation can improve the efficiency and quality of software
development, even causing changes in social production modes. Therefore, code generation has
been a significant research hotspot in the fields of artificial intelligence (AI), natural language
(NL) processing, and software engineering. Recently, code generation has made substantial ad-
vancements in both academic and industrial domains [8, 16, 30, 49]. In particular, large language
models (LLMs) have achieved excellent performance and demonstrate promising potential on
code generation tasks [15, 18, 38, 64].1

Nonetheless, generating correct code for complex requirements poses a substantial challenge,
even for experienced human programmers. Intuitively, humans, as social beings, tend to rely
on collaborative teamwork when encountering complex tasks. Teamwork through division of
labor (DOL), interaction, and collaboration to solve complex problems, has been theorized to
play an important role in dealing with complexity, as posited in both teamwork theory [5, 26] and
software engineering practice [4, 13, 34]. The benefits of collaborative teamwork are manifold: (1) It
breaks down complex tasks into smaller subtasks, making the entire code generation process more
efficient and controllable. (2) It assists with error detection and quality control. Team members can
review and test the generated code, providing feedback and suggestions for improvement, thus
reducing potential errors and defects. (3) It ensures that the generated code is consistent with the
expected requirements. Team members can offer different viewpoints to solve problems and reduce
misunderstandings.

A straightforward way to implement collaborative teamwork entails training different models
to handle the corresponding subtasks, subsequently conducting joint training to foster mutual
understanding of behaviors to assemble them into a team [48]. However, this training approach is
costly, especially for LLMs. The scarcity of relevant training data further exacerbates the difficulty
of achieving collaborative code generation. Revolutionary advancements in artificial general intelli-
gence, especially LLMs represented by ChatGPT [39], provide a turning point. These LLMs perform
commendably across tasks in various stages of software development, laying the groundwork for
DOL. Furthermore, LLMs use language as the foundation for input and output and align with
human needs through instructions or prompts, offering the potential for inter-model interaction
and collaboration.

To this end, we propose a self-collaboration framework aimed at guiding LLMs to collaborate
with themselves, thereby dealing with complex requirements and boosting the performance of
code generation. This framework is divided into two parts: DOL and collaboration, both of which
are dominated by role instructions. First, role instructions achieve DOL by allocating specific roles
and responsibilities to LLMs. This strategy enables LLMs to think about and tackle tasks from the
standpoint of the roles they play, transforming the original LLMs into domain “experts,” as shown
in Figure 1. Second, role instructions control the interaction between roles, allowing otherwise
isolated roles to form a virtual team and facilitate each other’s work.

To promote efficient collaboration, we introduce software-development methodology (SDM)
into a self-collaboration framework. SDM provides a set of clearly defined stages, principles, and
practices that serves to organize and manage teams effectively, ultimately controlling development
complexity and improving software quality [1, 46]. Following SDM, we instantiate an elementary
team composed of three roles (i.e., analyst, coder, and tester) to achieve this goal. These roles
adhere to an SDM-defined workflow where the stages of analysis, coding, and testing are performed
sequentially, with each stage providing feedback to its predecessor. Specifically, the analyst breaks

1Our implementation is available at https://github.com/YihongDong/Self-collaboration-Code-Generation

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

https://github.com/YihongDong/Self-collaboration-Code-Generation

Self-Collaboration Code Generation via ChatGPT 189:3

Fig. 1. An example of role-playing. Through role-playing, LLM transforms into an expert within a specific
domain, delivering a professional-perspective response to the same requirement.

down requirements and develops high-level plans for guiding the coder; the coder creates or
improves code based on the plans or the tester’s feedback; the tester compiles test reports based on
the coder’s outcome and documents any issues found during testing. We employ three ChatGPT2

agents to respectively play the three roles through role instructions, and then they collaborate to
address code generation tasks under the guidance of self-collaboration framework. The primary
contributions of our work can be summarized as follows:

(1) We propose a self-collaboration framework with role instruction, which allows LLM agents
to collaborate with each other to generate code for complex requirements.

(2) Following SDM, we instantiate an elementary team, which comprises three LLM roles (i.e.,
analyst, coder, and tester) responsible for their respective stages in the software development
process.

(3) Building on self-collaboration framework, the virtual team formed by ChatGPT (GPT-3.5)
can achieve significant improvements compared to the single LLM agent on multiple code-
generation benchmarks.

(4) In some real-world scenarios, self-collaboration code generation exhibits notable effectiveness
on more complex code generation tasks (such as repository-level code generation) that are
challenging for the single LLM agent.

2 Self-Collaboration Framework
Our self-collaboration framework consists of two parts: DOL and collaboration, which is shown
in Figure 2 (left). Given a requirement G , we propose to perform self-collaboration with LLMs to
generate the output ~. The task is defined as T : G → ~.

2.1 DOL
In DOL part, we leverage prior knowledge to decompose the process of solving a complex task into
a series of stages T ⇒ {S8 };8=1 and construct some distinct roles {' 9 }<9=1 based on {S8 };8=1. Each
stage S8 can be processed by one or more roles '′

9B .
3

It is widely acknowledged that LLMs are sensitive to context, as they are trained to predict
subsequent tokens based on preceding ones. Consequently, it is prevalent to control LLM generation
using instructions or prompts [11, 40, 41]. In order to achieve DOL, we craft a specific type of

2The ChatGPT referenced throughout our article defaults to the GPT-3.5 version.
3In our self-collaboration framework, each stage is managed by a specific type of roles, but the number of roles within that
type can vary. The order of the stages determines the sequence in which different types of roles are executed, but the roles
within a single stage operate in parallel.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

189:4 Y. Dong et al.

Fig. 2. Self-collaboration framework for code generation and its instance.

instruction to assign roles and responsibilities to LLMs, which we refer to as role instructions.
Specifically, we ask an LLM to act as a particular role that has a strong correlation with its respon-
sibilities. Furthermore, we need to convey the detailed tasks, i.e., responsibilities, this role should
perform. In general, a clear and unverbose task description in the instruction could lead to LLM’s
behavior being more in line with your expectations. One case where it may not be necessary to
outline a role’s responsibilities is when the DOL is common enough that matching roles can be
found in reality.

Through role-playing, we can effectively situate LLMwithin a specific domain, thereby eliciting its
expertise within that domain. Our empirical evidence suggests that this role-playing approach yields
superior results compared to directly engaging the LLM in the task without a pre-defined contextual
setting. Thus, role-playing can be harnessed as an efficient tool to enhance the performance of the
LLM in specialized tasks.

Note that the role instruction only needs to be provided once at the initialization of each
LLM agent to provide specific guidance on its behavior throughout subsequent interaction, thus
enhancing the overall efficiency and clarity in collaboration.

2.2 Collaboration
After assigning roles to LLMs in DOL part, roles interact their outputs with other roles as the stages
progress, refining the work and ensuring an accurate and thoughtful output ~. In collaboration part,
we focus on facilitating effective interactions among distinct roles to ensure that they mutually
enhance each other’s work.

The interaction among roles occurs in the form of NL, which is supported by the foundational
aspects of the language model. We specify the role, information, and format that each role interacts
with in role instructions, which allows the whole process of collaboration to be well controlled.
The collaboration part can be formalized as follows:

argmax
BC

% (BC |B{<C }, '< ((C) , G), (1)

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

Self-Collaboration Code Generation via ChatGPT 189:5

Algorithm 1: Pseudocode of Self-Collaboration Framework
Require: Requirement G , Task T , and LLM M.
Ensure: Output ~.

DOL Part
1: Initial Stages {S8 };8=1 according to task T .
2: Initial Roles {' 9 }<9=1 for LLMs M′B based on stages {S8 };8=1 and role instructions.

Collaboration Part
3: Initial blackboard B and index C .
4: repeat
5: Obtain B{<C } from B.
6: Sample BC via Equation (1).
7: Add BC to B.
8: Compute ~C via Equation (2).
9: Update ~ and C .

10: until End condition is satisfied
11: return ~

where BC is the output of stage SC , B{<C } indicates the prerequisite-stage outputs of SC ,4 and '< ((C)
represents the role corresponding to SC . We consider the computation of % (BC |B<C , '< ((C) , G) as the
collaboration, wherein role '< ((C) collaborates with the roles of each preceding stage to generate
BC . Output ~ is iteratively updated along with the progression of SC :

~C = 5 (BC , ~<C), (2)

where 5 is an update function. Once the end condition is satisfied,5 the final output ~ is derived. To
coordinate collaboration between different roles, we set up a shared blackboard [37], from which
each role exchanges the required information to accomplish their respective tasks BC via Equation
(1). The pseudocode of our self-collaboration framework is outlined in Algorithm 1.

3 Instance
We introduce the classic waterfall model [43] from SDM into self-collaboration framework to make
the teamwork for code generation more efficient. Specifically, we design a simplified waterfall model
consisting of three stages, i.e., analysis, coding, and testing, as an instance for a self-collaboration
code generation. The workflow of this instance follows the waterfall model flowing from one stage
to the next, and if issues are found, it returns to the previous stage to refine. Thus, we establish an
elementary team, comprising an analyst, coder, and tester, responsible for the analysis, coding, and
testing stages, as illustrated in Figure 2 (right). These three roles are assigned the following tasks:
Analyst. The goal of the analyst is to reduce the difficulty of coding by abstracting and decom-

posing the task from a high-level, rather than delving into the details of the implementation. Given
a requirement G , the analyst breaks G down into several easily solvable subtasks to facilitate the
division of functional units and develops a high-level plan to guide the coder in writing the code.

4Note that our self-collaboration framework can be parallelized if the relationship between stages {S8 };8=1 is not a
straightforward linear relationship. In other words, if one stage does not depend on the results of another stage, then they
can be executed in parallel. A specific scenario is that in a software development project including front-end, back-end, and
database development, the analysis stage only needs to define the interface in advance and the corresponding coding stages
can be carried out in parallel.
5The end condition is defined by prior knowledge, and an example can be found in the last paragraph of Section 3.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

189:6 Y. Dong et al.

Fig. 3. An example of role instruction for coder in the instance of self-collaboration framework.

Coder. As the central role of this team, the coder is responsible for writing the code, but its work
is carried out with the assistance and supervision of the analyst and tester. Thus, we assign two
responsibilities to the coder: (1) Write code that fulfills the specified requirements, adhering to the
plan provided by the analyst. (2) Repair or refine code, taking into account the feedback of test
reports feedbacked by the tester.
Tester. The tester is responsible for inspecting the code and generating a test report on various

aspects of functionality, readability, and maintainability to help the coder improve the quality of its
code. Rather than directly introducing a compiler and test cases to execute the code, we use the
model to simulate the testing process and produce test reports, thereby avoiding external efforts.

We customize role instructions for LLMs (exemplified by ChatGPT) to play the three roles. The
role instruction includes not only the role description (role and its responsibilities) but also the
team description and the user requirements, which will work together to initialize the ChatGPT
agent, thereby setting the behavior of ChatGPT. An example of role instruction for coder is shown
in Figure 3. In addition, interactions occur between roles responsible for two successive stages, and
we limit the maximum interaction (MI) to =. We update the output ~C only when the stage (C is
coding, and this workflow terminates upon = is reached or the tester confirms that no issues persist
with ~C . When dealing with ~C composed of multiple components, it is recommended to ask LLMs
to generate outputs in JavaScript Object Notation format directly, which can reduce omissions and
enhance the quality of generation outputs.

4 Evaluation
We aim at answering the following research questions (RQs):

—RQ1: What is the performance of self-collaboration approach compared to the various baselines
on public code-generation benchmarks?

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

Self-Collaboration Code Generation via ChatGPT 189:7

—RQ2 : What is the effect of roles in self-collaboration? Specifically, it can be divided into three
questions: (1) What is the contribution of each role in the virtual team? (2) What is the effect
of other virtual teams? (3) What is the effect of role-playing?

—RQ3: What is the performance of self-collaboration based on different LLMs, especially the
most powerful LLM GPT-4?

—RQ4: What is the impact of interaction numbers for self-collaboration?
—RQ5: What are the results of more detailed analysis (specifically, error analysis and cost
analysis) for self-collaboration?

—RQ6: How does self-collaboration work in repository-level software development scenarios
and how does it perform?

4.1 Experiment Setup
4.1.1 Benchmarks. We perform a comprehensive evaluation on six code-generation benchmarks

to demonstrate the efficacy of self-collaboration. In addition, we also collect several projects in
real-world development environments to showcase the excellent performance of self-collaboration
on more complex code generation tasks.

—MBPP (sanitized version) [3] contains 427 manually verified Python programming tasks,
covering programming fundamentals, standard library functionality, and more. Each task
consists of an NL description, a code solution, and three automated test cases.

—HumanEval [8] consists of 164 handwritten programming tasks, proposed by OpenAI. Each
task includes a function signature, NL description, use cases, function body, and several unit
tests (average 7.7 per task).

—MBPP-ET and HumanEval-ET [14] are extended versions of MBPP and HumanEval with over
100 additional test cases per task. This updated version includes edge test cases that enhance
the reliability of code evaluation compared to the original benchmark.

—APPS [20] consists of problems collected from different open-access coding websites such
as Codeforces, Kattis, and more. Problems are more complicated, as the average length of a
problem is 293.2 words (about 5–25 times higher than preceding benchmarks). Each problem
has multiple specifically designed test cases, and the average number of test cases is 21.2.

—CoderEval [61] contains four types of code in addition to the standalone code, i.e., Plib-depend,
Class-depend, File-epend, and Project-depend, to simulate the dependencies in real-world
development.

4.1.2 Baselines. In this article, we compare self-collaboration with three kinds of baselines:
LLMs customized for code, generalist LLMs, and prompting approaches.

(1) LLMs customized for code represent the LLMs specifically designed to solve code generation tasks
and optimized on a large amount of code data, which helps to locate the performance level of our
approach. This kind of baseline includes:

—AlphaCode (1.1B) [30] is a transformer-based code generation model, which is trained on
selected public codes before July 14, 2021, and can solve some basic code generation problems.

— Incoder (6.7B) [18] is a unified generation model that allows left-to-right code generation and
code infilling/editing by the causal mask language modeling training objective.

—CodeGeeX (13B) [64] is a large-scale multilingual code generation model with 13 billion
parameters, pre-trained on a large code corpus of more than 20 programming languages.

—StarCoder (15.5B) [29] is a Code LLM trained on permissively licensed data from GitHub,
including from 80+ programming languages, Git commits, GitHub issues, and Jupyter note-
books.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

189:8 Y. Dong et al.

—CodeGen (16.1B) [38] is an LLM trained on NL and programming data for conversation-based
program synthesis. In this article, we employ the CodeGen-Multi version.

—PaLM Coder (540B) [10] is finetuned from PaLM 540B on code, where PaLM uses a machine
learning system, named Pathways, that enables highly efficient training of LLMs across
thousands of accelerator chips.

—CodeX (175B) [8], also known as code-davinci-002, is fine-tuned from davinci 175B [6] on
multilingual code data with code-completion tasks. CodeX is also the backbone model that
powers Copilot [19] (a well-known commercial application).

—CodeX (175B) + CodeT [7] is a previous state-of-the-art (SOTA) approach before GPT-4.
CodeT employs LLMs to automatically generate test cases for code samples. It executes code
samples with these test cases and conducts a dual execution agreement, taking into account
output consistency against test cases and output agreement among code samples.

—CodeLlama (34B) [45] is an open foundational model for code generation tasks, derived from
continuous training and fine-tuning based on Llama 2 [55].

(2) Generalist LLMs represent the LLMs that are trained on data widely collected from Internet and
show strong performance on a variety of tasks, which are used as the base model of our approach. This
kind of baseline includes:

—ChatGPT [39] is a sibling model to InstructGPT [42], which is trained to follow an instruction
in a prompt and provide a detailed response. We access ChatGPT through OpenAI’s API.
Since ChatGPT receives regular updates, we employ a fixed version “gpt-3.5-turbo-0301” as
our base model, which will not receive updates, to minimize the risk of unexpected model
changes affecting the results.

—GPT-4 [40] is a large-scale, multimodal model which can accept image and text inputs and
produce text outputs. GPT-4 exhibits human-level performance on various benchmarks.

(3) Prompting approaches here represent the general prompting approaches as well as those specifi-
cally designed for code generation, representing a category of our related work. This kind of baseline
includes:

—Chain-of-thought (CoT) [57] generates a chain of thought for each question and then
generates the corresponding code. For CoT, we use the instruction “Let’s think step by step.”
[27] to implement it.

—Self-planning [23] and Self-debugging [9] teach LLMs to perform planning and debugging
with few-shot prompting. We use the prompts provided in their original papers to implement
them.

— Iter-improving is a baseline approach proposed in this article, which considers allowing the
base model to continuously improve the generated code until it can no longer be modified.
This approach is used to demonstrate that the effectiveness of our method is not solely due to
multiple improvements to the output of LLMs. We use the instruction “Please improve this
code” to implement iter-improving, and the maximum number of iterations is set to 10.

4.1.3 Evaluation Metric. In this article, we mainly focus on Pass@1: the probability that the
model solves the problem in one attempt, since in real-world scenarios we usually only consider one
generated code. We adopt the unbiased variant of Pass@1 [8] to measure the functional correctness
of top-1 generated codes by executing test cases, which can be formulated as:

Pass@1 = E
Problems

[
j (generated code)

]
, (3)

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

Self-Collaboration Code Generation via ChatGPT 189:9

Table 1. Comparison of Self-Collaboration and Baselines

Approach HumanEval HumanEval-ET MBPP MBPP-ET

LLMs Customized for Code
AlphaCode (1.1B) [30] 17.1 - - -
Incoder (6.7B) [18] 15.2 11.6 17.6 14.3
CodeGeeX (13B) [64] 18.9 15.2 26.9 20.4
StarCoder (15.5B) [29] 34.1 25.6 43.6 33.4
CodeGen-Mono (16.1B) [38] 32.9 25.0 38.6 31.6
PaLM Coder (540B) [10] 36.0 - 47.0 -
CodeLlama (34B) [45] 48.2 36.8 55.9 42.1
CodeX (175B) [8] 47.0 31.7 58.1 38.8
CodeX (175B) + CodeT [7] 65.8 51.7 67.7 45.1
Generalist LLMs
ChatGPT (GPT-3.5) [39] 57.3 42.7 52.2 36.8
GPT-4 [40] 67.6 50.6 68.3 52.2
Prompting Approaches
Zero-shot CoT [57] 44.6 37.2 46.1 34.8
Self-planning [23] 65.2 48.8 58.6 41.5
Self-debugging [9] 61.6 45.8 60.1 52.3
Iter-improving 55.5 46.3 45.7 32.8
Ours 74.4 (↑ 29.9%) 56.1 (↑ 31.4%) 68.2 (↑ 30.7%) 49.5 (↑ 34.6%)

The green highlights indicate the improvements in comparison to ChatGPT (GPT-3.5). Bold values denote the best
performance.

where E
Problems

denotes the expectation of all problems and j is an indicator function that outputs 1

if generated code passes all test cases of the corresponding problem, otherwise 0.

4.1.4 Implementation Details. For self-collaboration and all prompting approaches, we employ
ChatGPT as the base model. We access ChatGPT using the “gpt-3.5-turbo” API with fixed version
“0301,” which will not receive updates. For self-collaboration, the maximum number of interactions
between roles is limited to 4. In all experiments, we set max tokens to 512 and temperature to 0 for
code generation. We only reference the results reported in their original papers for AlphaCode (1.1B)
[30] and PaLM Coder (540) [10], which are inaccessible to us. The results of all other baselines are
evaluated under the same settings of self-collaboration for fairness. All these results are comparable
with the results reported in their original paper.

4.2 RQ1: Self-Collaboration vs. Baselines
We compare self-collaboration with baselines in the “NL + signature + use cases” setting,6 as
shown in Table 1. Experimental results show that self-collaboration code generation based on
ChatGPT (GPT-3.5), with a three-person team (including analysts, coders, and testers), achieves
SOTA performance across the four code generation benchmarks. When compared to ChatGPT,
the improvement offered by our framework is substantial, with a relative increase ranging from
6This setting provides requirements, function signature, and use cases as input to generate code. which is commonly used
for baselines, so we also adopt this setting for comparison. However, using only requirements (NL-only) as input is more
consistent with real-world development scenarios and more challenging. Therefore, in other experiments, we use the
“NL-only” setting if not specified. Detailed discussions can be found in Appendix B.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

189:10 Y. Dong et al.

Table 2. The Performance of Self-Collaboration Code
Generation on APPS

Approach Competition Interview

CodeX (175B) + CodeT [7] 2.2 8.1
ChatGPT (GPT-3.5) [39] 1.2 6.8
Ours 3.4 (↑ 183.3%) 10.7 (↑ 57.4%)

The green highlights indicate the improvements in comparison to ChatGPT
(GPT-3.5). Bold values denote the best performance.

Table 3. The Performance of Self-Collaboration Code Generation on CoderEval

Approach Standalone Plib-Depend Class-Depend File-Depend Project-Depend Average

ChatGPT (GPT-3.5) 35.87 21.43 8.73 16.91 9.57 19.82
Ours 47.63 38.1 21.82 20.59 13.04 29.14 (↑ 47.1%)

Bold values denote the best performance.

29.9% to 34.6%. It is noteworthy that the self-collaboration code generation yields more significant
improvements on the datasets associated with extended test cases, namely HumanEval-ET and
MBPP-ET. This suggests that our self-collaboration framework can effectively assist base LLMs in
generating reliable code. This enhancement may be attributed to the collaborative team’s ability to
consider a wider range of boundary conditions and address common bugs.

Compared to zero-shot CoT, Iter-improving, and two concurrent works (self-planning and self-
debugging), self-collaboration also performs significantly better than these prompting baselines.
It is worth mentioning that CoT is a successful prompting technique that solves the reasoning
problem by generating intermediate reasoning steps, but CoT is not suitable for code generation
[23, 53]. We find that the performance of Iter-improving is usually lower than the single LLM agent
with ChatGPT except for HumanEval-ET. This is because ChatGPT tends to optimize for edge test
cases. While this helps in HumanEval-ET, it sometimes leads to unnecessary modifications of the
correct edge cases. Such adjustments might be safer in some scenarios, like throwing exceptions,
but deviate from expected output.

We evaluate self-collaboration on a more algorithmically intricate benchmark, namely, APPS.
This benchmark comprises three levels of difficulty: introductory, interview, and competition. In
this experiment, we select the first 1,000 code generation tasks from the most challenging two
levels: interview and competition. Following the settings in CodeT [7], we use NL in APPS as a
comment and then concatenate the signature “def solution(stdin : str) → str :” as input to the model.
Experimental results shown in Table 2 indicate that self-collaboration enhances the performance of
ChatGPT substantially and exceeds the performance of the previous SOTA approach CodeX (175B)
+ CodeT [7].

To evaluate self-collaboration on a more challenging and realistic benchmark, we conduct
experiments on CoderEval [61] based on ChatGPT (GPT-3.5), following the settings in its paper. As
shown in Table 3, self-collaboration code generation substantially outperforms the single ChatGPT,
achieving relative improvements of 47.1% on Pass@1.

4.3 RQ2: The Effect of Roles in Self-collaboration
We investigated code generation relying solely on NL descriptions. In this setting, we explore the
effect of roles in self-collaboration in three ways: (1) Conducting ablation studies with the three-
roles team we assembled (analyst, coder, and tester). (2) Exploring alternative team configurations,

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

Self-Collaboration Code Generation via ChatGPT 189:11

Table 4. Effectiveness of ChatGPT Roles in Self-Collaboration Code Generation

Roles HumanEval HumanEval-ET

Ablation of Roles
Coder 45.1 35.3
+ Analyst 54.9 (↑ 21.8%) 45.2 (↑ 28.1%)
+ Tester 56.8 (↑ 26.0%) 45.2 (↑ 28.1%)
+ Analyst + Tester 63.5 (↑ 40.8%) 51.9 (↑ 47.1%)
Different Team Configurations
Analyst + Coder + Tester + Compiler 64.6 50.0
Driver + Observer (Pair Programming) 57.4 44.6
The Role of Role-Playing
Few-shot Prompting (four-shot) 58.1 47.5
Instruction (zero-shot) 60.0 47.5
Role Instruction (Ours) 64.4 51.9

We sample four HumanEval tasks to construct examples for few-shot prompting, which are
excluded in evaluations of “The Role of Role-playing.”
The green highlights indicate the improvements in comparison to Coder. Bold values denote
the best performance.

i.e., a team incorporating a compiler, and a team of pair programming. The team with the compiler
constructs the use cases in HumanEval as public test cases and obtains the execution results through
compiler to help the tester generate reports. In the team with pair programming, we use a two-agent
team of driver and observer for code generation. (3) Implementing the analysis, coding, and testing
phases directly without role-playing to validate the role of role-playing. To implement these tasks,
we used both instruction and few-shot prompting strategies. Instruction (zero-shot), which involves
instructions with the role-playing component excised, and few-shot prompting, which provides
examples demonstrating the tasks of analyzing, coding, and testing. Details of instructions and
prompts are provided in Appendix F. The experimental results are shown in Table 4.

First, the results show that the performance substantially improves when compared to employing
only the coder role after forming a team, regardless of whether it is a two-role or three-role team.The
coder-analyst-tester team achieved the best results on HumanEval and HumanEval-ET benchmarks,
with relative improvements of 40.8% and 47.1%, respectively.

Second, we find that the performance of “Analyst + Coder + Tester + Compiler” is comparable to
that of “Analyst + Coder + Tester.” The reason may be that some mistakes can already be resolved
by the tester without relying on the complier’s results. Moreover, the team of pair programming
is superior to the single LLM agent, but still performed slightly worse compared to the team of
“Analyst + Coder + Tester.”

Third, the results show that role-playing approach substantially outperforms the baselineswithout
role-playing. We suppose that the possible reason for the better performance of role-playing LLMs
is that it provides a specific context that constrains the generation space of LLMs, making it reason
within the constraints of the scenario, generating responses that align with the perspectives that
LLM in that role might have. Therefore, role-playing serves to evoke the latent abilities of LLMs
instead of directly improving LLM’s abilities. Moreover, in two scenarios without role-playing,
we observe that instruction (zero-shot) is slightly better than few-shot prompting. We identified
two potential factors that could lead to this observation. (1) Few-shot prompting may bias the
LLMs’ understanding of human intent due to the limited selection of examples that might not fully

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

189:12 Y. Dong et al.

Fig. 4. Self-collaboration capacities of different LLMs.

Table 5. The Performance of Self-Collaboration Code Generation with GPT-4

Approach HumanEval HumanEval-ET MBPP MBPP-ET

GPT-4 [40] 67.7 (67.0) 50.6 68.1 49.2
GPT-4 + Self-collaboration 90.2 70.7 78.9 62.1

The result in parenthesis is reported on the GPT-4 technical report [40].

reflect intent. (2) The long prompt (about 14 times the instruction length in the experiment) used in
few-shot prompting could hinder the LLMs’ effective extraction of relevant information.

4.4 RQ3: Self-Collaboration on Different LLMs
In addition to ChatGPT, we apply self-collaboration to seven open-source LLMs, including Fastchat-
3B [32], ChatGLM-6B [54], MPT-7B [36], Vicuna-7B/13B [33], HuggingChat-30B [21], and
Dromedary-65B [22], and the most powerful LLM GPT-4 [40]. Our objective is to evaluate the
efficacy of self-collaboration in tackling complex tasks, specifically those challenging for the single
LLM agent. For such tasks on HumanEval, we employ the self-collaboration strategy as the solution.
As illustrated in Figure 4, the coding ability of chat-based LLMs generally exhibits an increasing
trend with the enlargement of model sizes. The self-collaboration capability starts to manifest
itself around the 7B parameters and subsequently continues to escalate, serving to evoke latent
intelligence within LLMs.

For themost powerful LLMGPT-4, we conduct additional experiments to evaluate self-collaboration
code generation based on GPT-4, following the settings in the GPT-4 technical report [40]. The
experimental results are shown in Table 5, and we can find that the enhancement effect of self-
collaboration on GPT-4 is significant.

To figure out the abilities required for self-collaboration, we conduct experiments on a series
of models including CodeLlama 7B and 34B [45], Llama2 [55] (the base model of CodeLlama) and
their Instruct version (model with instruction tuning). As illustrated in Figure 5, the enhancement
observed in Llama2-7B using self-collaboration falls short when compared to CodeLlama-7B. This

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

Self-Collaboration Code Generation via ChatGPT 189:13

Fig. 5. Self-collaboration capacities of CodeLlama series.

discrepancy emphasizes the critical role of domain-specific expertise.The performance improvement
of the Instruct version using self-collaboration generally exceeds that of the original version,
highlighting the significance of in-context learning capabilities. Furthermore, the advancement
in CodeLlama-34B using self-collaboration eclipses that of CodeLlama-7B on both two versions,
underscoring the importance of reasoning abilities. Therefore, self-collaboration may require the
following abilities for LLMs, including strong domain-specific expertise ability for role-playing,
strong in-context learning ability to follow instructions, and strong reasoning ability to solve
problems effectively.

4.5 RQ4: The Effect of Interaction
To evaluate the impact of interaction on self-collaboration code generation, we control the MI
between roles in this experiment, with the results shown in Table 6. The MI value equal to zero
signifies a complete absence of interaction between the roles involved. This means that the code
generated by a particular coder does not receive feedback from other roles, so the result is the same
as employing a coder only. The MI value increases from 0 to 1 for the most significant performance
improvement. This result shows that for these four benchmarks, our approach solves most of the
tasks within two rounds (i.e., one round of interaction). The continued increase in the MI value
beyond the initial round yields diminishing returns in terms of improvement; however, there is
still a consistent enhancement observed. This suggests that more complex tasks are undergoing
continuous improvement. In general, higher MI values yield better outcomes. Nonetheless, due to
the maximum token constraint of ChatGPT, our exploration was limited to the MI value from 1 to
4 rounds.

4.6 RQ5: Analysis for Self-Collaboration
In this section, we further analyze the errors generated by self-collaboration and the cost of
self-collaboration compared to other prompting approaches.

4.6.1 Error Analysis. To deepen the understanding of error modes for self-collaboration, we
conducted a qualitative error analysis. OnHumanEval dataset, we classify tasks into three categories:
the first category includes tasks that can be correctly generated by the coder; the second category

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

189:14 Y. Dong et al.

Table 6. The Effect of MI for Self-Collaboration Code
Generation

MI HumanEval HumanEval-ET MBPP MBPP-ET

0 45.1 35.3 47.5 34.3
1 60.4 50.7 53.0 38.0
2 62.2 50.7 54.1 38.5
4 63.5 51.9 55.5 40.8

Fig. 6. Error analysis for self-collaboration.

includes tasks that cannot be correctly generated by the coder itself but can be generated correctly
through introducing self-collaboration; and the third category includes tasks that cannot be correctly
generated even with self-collaboration. By manually checking the tasks in the third category, we
attribute the responsibility for generating errors to different roles and further subdivide the types
of errors in Figure 6. From the findings, it is evident that the predominant error originates from the
coder. This error is inherently tied to the performance of the base model. However, the introduction
of self-collaboration markedly improves the quality of code generation, where 18.4% of tasks
unpassed by coders are corrected by self-collaboration. Moreover, the errors caused by the analyst
mainly stem from ambiguous or incomplete requirement descriptions, which cannot be solely
attributed to the analyst. Remedying this issue can be alleviated by providing more precise and
complete requirement descriptions or incorporating a small amount of human guidance. On the
other hand, errors associated with testers predominantly result from exception handling. These
adjustments usually do not introduce new errors and tend to enhance the safety of the program.
However, they may cause some instances to throw an error instead of returning a value, thus failing
the test case.

In addition to the preceding problems, the probability of deviating from the requirements caused
by the additional introduction of the analyst and tester is less than 1%, so the whole system is
relatively reliable.

4.6.2 Cost Analysis. As illustrated in Figure 7, we measure the cost (prompt tokens + generated
tokens) and performance of self-collaboration, coder, and other prompting approaches, where we
normalize the cost of coder as 1. The experimental results indicate that the improvement of the
self-collaboration approach is significant, and its token usage is moderate among all prompting
approaches. However, considering the high labor expenses of software development teams, the
cost-effectiveness of self-collaboration is obvious.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

Self-Collaboration Code Generation via ChatGPT 189:15

Fig. 7. Performance and cost of self-collaboration compared to baselines.

4.7 RQ7: Case Study
We conduct case studies to qualitatively evaluate the performance of our approach. Our study
mainly focuses on two kinds of cases. The first is a relatively simple requirement for function-level
code generation, which aims to demonstrate the workflow of our virtual team. The second involves
a more complex real-world requirement, specifically asking model to create a project in Python,
which is a high-level requirement similar to a user story. The extended case study can be found in
Appendix D.

4.7.1 Workflow. We illustrate the workflow and performance of self-collaboration on HumaneE-
val benchmark. A case study is presented in Figure 8, which exemplifies how the three roles work
collaboratively to solve code generation in self-collaboration. (1) The analyst conducts a compre-
hensive analysis and devises a plan to address the entire set of requirements. For this requirement,
the analyst first decomposes it into several easy-to-solve subtasks and then gives some high-level
plans based on the subtasks. (2) The coder implements a code according to the given requirements,
the devised decompositions, and high-level plans. It is evident that each sub-function and step
within this implemented code exhibits a nearly one-to-one correspondence with decompositions
and high-level plans. (3) The tester composes a detailed test report for the implemented code,
identifying errors within it. In this test report, the tester thinks that the implemented code may
lead to the removal of duplicate elements from the list, potentially resulting in the failure of some
edge test cases. Consequently, it is recommended to eliminate the line “lst = list(set(lst))” from the
implemented code. (4) The coder subsequently refines the code based on the feedback provided in
the test report. In the revised code, the recommendation from the test report is taken into account,
and the line “lst = list(set(lst))” is concurrently removed. (5) The tester assessed the revised code,
confirming that no issues exist and all tests pass, thus concluding the code generation process.

4.7.2 Complex Task. We apply self-collaboration code generation to a complex game develop-
ment requirement, with a case study shown in Figure 9. Self-collaboration approach generates
a working game that fulfills all requirements without human intervention. First, our approach
implements the correct game logic, where the mouse clicks to start the game, and the mouse
controls the character from the starting point, through all obstacles, and avoiding falling bombs to
reach the ending point. The game design ensures precise character control, feedback for win/loss
conditions, and correct collision detection with obstacles and bombs. Second, the specifications
outlined in the requirements have been adhered to, including the visual representation of the start
and end points, the necessary game assets loading, and the proper scaling of images. Third, it

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

189:16 Y. Dong et al.

Fig. 8. Case study on HumanEval benchmark.

Fig. 9. Case study on complex tasks in real-world scenarios. Red markers are added to denote specific objects.

also notices some game logic that is not mentioned in the requirements, but perfectly in line with
common sense, such as “Bombs fall from the top of the screen and reset their position when they
hit the bottom.” In contrast, the result of direct generation is a rough draft of the Python script. This
script does not include all the functionality requested in the requirements. Even if we manually
input the instruction “Continue to add functionality” until ChatGPT thinks all functionality is
covered, it still fails to satisfactorily fulfill this requirement actually.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

Self-Collaboration Code Generation via ChatGPT 189:17

Fig. 10. Case study on complex tasks in real-world scenarios.

We also conduct a case study related to website development. The requirement of this case
requires the model to develop a weather forecast website, involving the generation of multiple
types of files (HTML, CSS, and Javascript), which can be considered as a micro development project.
The case study of the website development is shown in Figure 10. Our self-collaboration code
generation approach produces a website that is superior to ChatGPT direct generation approach
in terms of functionality and visual appeal. The analysts make the generated code comprehen-
sive considering every requirement, including search functionality, weather information display,
temperature weather map, and so forth. The testers assure that each requirement has not been
misunderstood and is truly in line with the user’s intent. In contrast, the direct generation approach
occasionally falls short, either by missing certain requirements or misunderstanding them. For
instance, it often neglects to include some weather information and fails to display worldwide
temperature weather maps.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

189:18 Y. Dong et al.

5 Related Work
In this section, we outline the most relevant directions and associated papers of this work to
highlight our research’s innovative and advanced nature.

5.1 Multi-Agent Collaboration
Multi-agent collaboration refers to the coordination and collaboration among multiple AI systems
or the symbiotic collaboration between AI and human, working together to achieve a shared
objective [52]. This direction has been under exploration for a considerable length of time [12, 35].
Recent developments indicate a promising trajectory wherein multi-agent collaboration techniques
are being utilized to transcend the limitations of LLMs. The ways of multi-agent collaboration with
LLMs are diverse. Recently, VisualGPT [58] and HuggingGPT [50] explore the collaboration of
LLMs with other models, specifically the LLMs are used as decision centers to control and invoke
other models to handle more domains, such as vision, speech, and signals. CAMEL [28] explores
the possibility of interaction between two LLMs. These studies primarily employ case studies in
the experimental phase to demonstrate their effectiveness with specific prompts for each case. In
contrast, our research utilizes both quantitative and qualitative analysis to provide a comprehensive
evaluation of self-collaboration code generation. By introducing SDM, we achieve steady and
significant improvements for all evaluations in this article with uniform role instructions.

Our work aligns with the concept of self-collaboration of LLMs, but it is uniquely positioned
within the field of software engineering, which intrinsically fosters collaborative attributes. To the
best of our knowledge, we are the first to introduce the waterfall model in SDM to the collaboration
among LLMs. We demonstrate the feasibility of this approach and provide the direction for future
work on multi-agent collaboration.

5.2 Instruction and Prompt Engineering
The success of LLMs has led to extensive attention to instruction and prompt engineering. This
direction is primarily concerned with designing and optimizing model inputs, i.e., prompts or
instructions, to more precisely guide the models to generate the desired outputs. This is a critical
task since the behavior of LLMs depends heavily on the inputs they receive [6, 17, 31].

Recent studies have shown that well-designed prompting methods, such as CoT prompting [56]
and zero-shot CoT [27], can significantly improve the performance of LLMs, even beyond the
scaling law. In addition, improved approaches such as Least-to-most prompting and PAL, based
on the CoT approach, further enhance LLMs in solving complex tasks, such as reasoning and
mathematical tasks. Meanwhile, since hand-crafted instructions or prompts may not always be
optimal, some researchers have explored automated instruction or prompt generation approaches
[24, 44, 51, 65]. These approaches try to find or optimize the best instructions or prompts for a
specific task in order to improve model performance and accuracy.

In this work, we incorporate role-playing in the instructions to enable the same LLM to be
differentiated into different roles, and demonstrate the effectiveness of role-playing.This encourages
the model to think and problem-solve from the perspective of the given role, thus ensuring diverse
and collaborative contributions toward the solution.

5.3 Application of LLMs in Various Stages of Software Development
With the increasing abilities of LLMs, there is an increasing interest in using them for tasks
that facilitate various stages of software development, such as code generation, automated test
generation, and automated program repair (APR).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

Self-Collaboration Code Generation via ChatGPT 189:19

The work [2] explores the potential of LLMs in driving requirements engineering processes.
The work [62] applied LLMs to code generation and demonstrated significant improvement in
the pass rate of generated complex programs. The work [25] employed LLMs for generating tests
to reproduce a given bug report and found that this approach holds great potential in enhancing
developer efficiency. The work [47] also demonstrates the effectiveness of applying LLMs to test
generation. In a comprehensive study conducted by the work [59], the direct application of LLMs
for APR was explored and it was shown that LLMs outperform all existing APR techniques by
a substantial margin. Additionally, the work [60] successfully implemented conversational APR
using ChatGPT.

The applications of LLMs in software development, as highlighted above, have shown numerous
successful outcomes in different stages. However, these successes are limited to individual task
(stage) of software development. These tasks can be performed synergistically through LLMs
to maximize their overall impact and thus achieve a higher level of automation in software
development.

5.4 Code Generation with Other Stage of Software Development
There are a few works that use various stages of software development to enhance code generation
based on LLMs without retraining. Some existing approaches pick the correct or best solution
from multiple candidates by reranking. CodeT [7] employs a language model to automatically
generate test cases for code samples and subsequently utilizes a dual execution agreement to rank
the code. Coder-Reviewer [63] introduces an additional reviewer model to enhance the coder model,
which generates requirements based on the code and calculates the maximum likelihood to rank
the generated code. They provide no feedback to the model, so that falls under the category of
post-processing. Recently, another type of approach focuses on improving the quality of generated
code. Self-planning [23] introduces a planning stage prior to code generation. Self-debugging [9]
teaches LLM to perform rubber duck debugging after code generation. They rely on few-shot
prompting to instruct LLM, which requires a certain amount of effort to construct demonstration
examples as prompts for each dataset.

Our work proposes self-collaboration code generation, which can cover any stage of the software
development process with little effort to customize the role instructions. Each role can be regarded
as an “expert” responsible for a distinct stage and provides feedback to each other to improve the
quality of the final generated code. Moreover, we introduce SDM, which is imperative for solving
complex code generation tasks and practical software development problems.

6 Discussion and Future Work
In this section, we discuss some limitations of this work and present a set of potential directions
for future research.

(1) There are still some gaps between the evaluation benchmark we used and the actual software
development scenarios. Because there is still a lack of benchmarks and corresponding evaluation
metrics that can truly reflect actual software development tasks. In order to alleviate this problem,
we have selected some more complex tasks originating from actual scenarios for the case study.

(2) Although the virtual team we have assembled is a fully autonomous system and the roles in
the virtual team can monitor and correct each other, incorporating a small amount of guidance
from human experts to oversee the functioning of the virtual team would help enhance the utility
of our approach in real-world application scenarios.

(3) In this study, we constructed a virtual development team consisting of three roles to target
the code generation task. However, for other problems, the team structure may need to be adjusted
accordingly. It is worth emphasizing that our proposed approach is not limited to the traditional

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

189:20 Y. Dong et al.

software engineering domain, and it has the potential to build virtual teams consisting of specific
roles for a variety of problems in other domains as well.

7 Conclusion
In this article, we have proposed a self-collaboration framework designed to enhance the problem-
solving capability of LLMs in a collaborative and interactive way. We investigate the potential of
LLMs in facilitating collaborative code generation within software development processes. Specif-
ically, based on the proposed framework, we assemble an elementary team consisting of three
distinct LLM agents, designed to address code generation tasks collaboratively. Extensive experi-
mental results demonstrate the effectiveness and generalizability of self-collaboration framework.
In conclusion, self-collaboration framework provides an effective approach to automatic code gener-
ation. This innovative approach has the potential to substantially improve the quality of generated
code, reduce human intervention, and accelerate the development of complex software systems.
Moreover, our work can serve as a foundation for future research on multi-agent collaboration
approaches in various domains and the development of more advanced and specialized virtual
teams to tackle more complex tasks.

Appendices
A Preliminary Knowledge
A.1 Code Generation
Code generation is a technology that automatically generates source code to facilitate automatic
machine programming in accordance with user requirements. It is regarded as a significant approach
to enhancing the automation and overall quality of software development. Existing code generation
approaches demonstrate relative proficiency in addressing “minor requirements” scenarios, such
as function completion and line-level code generation. However, when confronted with complex
requirements and software system design, they fall short of offering a comprehensive solution.

A.2 Software Development
Software development is a product development process in which a software system or software part
of a system is built according to user requirements. The software development lifecycle (SDLC)
breaks up the process of creating a software system into discrete stages, including requirement
analysis, planning and design, coding, testing, deployment, and maintenance. Software engineering
methodology provides a framework for the development process and defines the stages and activities
involved in the development of software. Different software development methodologies typically
follow the SDLC, but they differ slightly in their implementation. Some common methodologies
include Waterfall, Agile, and DevOps.

Software development is a complex process that involves many different activities and stages, ne-
cessitating the formation of a software development team. The structure of a software development
team typically includes roles such as developers, testers, designers, analysts, project managers, and
other specialists. However, the structure of the software development team can be adjusted depend-
ing on factors such as the type and complexity of the project and even the chosen methodology.

A.3 Waterfall Model
The waterfall development model is the most classic software development methodology, which
has the following advantages: (1) Its linear and sequential nature facilitates ease of understanding
and implementation, particularly for LLMs. (2) Each phase within this model is distinctly defined,
accompanied by specific deliverables and a rigorous review process, which enhances manageability.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

Self-Collaboration Code Generation via ChatGPT 189:21

Table 7. Effectiveness of ChatGPT Roles in Self-Collaboration Code Generation with “NL + Signature + Use
Cases” Setting

Approach HumanEval HumanEval-ET MBPP MBPP-ET

Direct 57.3 42.7 52.2 36.8
Self-Collaboration (Virtual Team)
Analyst-Coder 73.5 (↑ 28.2%) 55.2 (↑ 29.2%) 65.3 (↑ 25.1%) 48.9 (↑ 32.9%)
Coder-Tester 60.3 (↑ 5.3%) 45.2 (↑ 5.9%) 64.2 (↑ 23.0%) 48.3 (↑ 31.3%)
Analyst-Coder-Tester 74.4 (↑ 29.9%) 56.1 (↑ 31.4%) 68.2 (↑ 30.7%) 49.5 (↑ 34.6%)

The green highlights indicate the improvements in comparison to the baseline approach. Bold values denote the best
performance.

(3) It enables the early detection and rectification of issues, which can significantly mitigate the
costs and adverse impacts of errors identified in subsequent phases of the project. For alternative
approaches, one may consider pair programming, test-driven development, and other software
development methodologies.

B Detailed Settings and Baselines
In this article, we employ two prevalent settings for code generation: The first setting, referred to
as NL + signature + use cases, provides an NL description, function signature, and use cases as
input prompts. The second setting denoted as NL-only, exclusively utilizes the NL description as
an input prompt. Despite the widespread use of the first setting, it encounters several issues, as
outlined below:

(1) The function signature contains valuable information, such as the function name, argument
types, names, and return value type, as do use cases.

(2) This setting is mainly suited for function-level code generation and proves challenging to
extend to file-level or repository-level code generation.

(3) Some code-generation benchmarks, such as MBPP, do not provide function signatures and
use cases, which is also common in real-world scenarios.

To this end, we also explore the second setting, namely NL-only, which is more consistent with
real-world development scenarios.

C Ablation Study with Roles in Self-Collaboration Code Generation
We verify the performance of roles in self-collaboration code generation in “NL + signature + use
cases” settings where signatures and use cases are provided in addition to NL. The results of this
evaluation are displayed in Table 7. As demonstrated in the findings, the self-collaboration code
generation is far more effective than the single LLM agent, which focuses only on the coding phase.
Furthermore, in this experimental setup, the role of analysts is particularly pronounced. In numerous
cases, the influence of the Analyst-Coder is nearly equivalent to that of the entire team. In the
absence of analysts, testers are able to detect coding errors to a certain degree. However, integrating
analysts, coders, and testers into cohesive teams maximizes efficiency and yields superior results.

We also performed ablation studies with roles on MBPP in “NL-only” setting. benchmark. The
results are shown in Table 8. From the results, it is clear that different roles perform differently on
MBPP than on HumanEval. The coder-tester team attained the highest performance on MBPP and
MBPP-ET benchmarks, with relative improvements of 36.7% and 39.4%, respectively.

The suboptimal performance of the analyst onMBPP andMBPP-ET benchmarksmay be attributed
to some tasks in MBPP feature inputs and outputs that diverge from conventional human coding

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

189:22 Y. Dong et al.

Table 8. Effectiveness of ChatGPT Roles in Self-Collaboration
Code Generation on MBPP with “NL-Only” Setting

Roles MBPP MBPP-ET

Coder 47.5 34.3
+ Analyst 54.8 (↑ 15.4%) 39.9 (↑ 16.4%)
+ Tester 64.9 (↑ 36.7%) 47.8 (↑ 39.4%)
+ Analyst + Tester 55.5 (↑ 16.9%) 40.8 (↑ 19.0%)

Thegreen highlights indicate the improvements in comparison to the baseline
approach. Bold values denote the best performance.

Fig. 11. Case study on MBPP benchmark.

practices and cognitive processes, and they lack any hints provided in requirement. Analysis on
such unconventional data usually yields results that align with human habits, while coding directly
based on requirements can handle this unconventional data. Based on our experimental results
and the phenomenon we observed, we suspect there might be some degree of data contamination
in MBPP. However, considering this fact, we still choose to publish these results. Under “NL +
signature + use cases” setting, LLM has access to more comprehensive input-output information,
and we find that the role of the analyst is significant.

D Extended Case Study
In addition to the case study on HumanEval benchmark mentioned in the article, we present
additional case studies on MBPP and HumanEval benchmarks, as depicted in Figures 11 and
12. These examples illustrate the efficacy of our self-collaboration code generation approach in
addressing challenges that are difficult to overcome using the single LLM agent.

Setup. We employ GPT-4 as the base model for case studies on complex tasks. We establish three
sessions, each accommodating a distinct role within the virtual team for self-collaboration. The role
instructions in each case are consistent, with no provision for customized alterations. Note that
these experiments can be seen as being conducted completely autonomously by teams of models.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

Self-Collaboration Code Generation via ChatGPT 189:23

Fig. 12. Case study on HumanEval benchmark.

E The Instruction of Baselines Pair Programming
We configure a type of pair programming team whose role instructions are as follows:

DRIVER = “I want you to act as the driver in this team. Your job is as follows:
1. You are responsible for writing code, i.e. translating your understanding of the requirement
into code.
2. You need to explain the code to help the observer understand what you have written.
3. If you receive suggestions from the observer, you need to fix or improve your code based
on his suggestions. Ensure that any changes made to the code do not introduce new bugs
or negatively impact the performance of the code.”

OBSERVER = “I want you to act as the observer in this team. You will receive the code
written by the driver, and your job is as follows:
1. You are primarily responsible for reviewing code written by drivers to ensure its quality
and accuracy. You need to provide suggestions on the code written by the drivers.
2. You also need to think about the needs that the code meets.
3. You also need to predict possible problems and errors and instruct drivers to correct
them.”

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

189:24 Y. Dong et al.

TEAM = “There is a pair programming team that includes a driver, and an observer. The
team needs to develop a program that meets a requirement. The different roles have different
divisions of labor and need to cooperate with each others.”

F The Prompt and Instruction of Baselines without Role-Playing
To verify the efficacy of the role-playing strategy, we employ two baselines without role-playing:
instruction (zero-shot) and few-shot prompting.
Instruction (Zero-Shot) is the part that removes the role-playing from the role instructions of

self-collaboration framework. We make a slight change to keep the sentence natural. Since coders
have two parts of responsibility (i.e., coding and repair), we split it into two instructions. The
instructions for each stage are as follows:

ANALYSIS = “1. Decompose the requirement into several easy-to-solve subproblems that
can be more easily implemented by the developer.
2. Develop a high-level plan that outlines the major steps of the program.
Remember, your plan should be high-level and focused on guiding the developer in writing
code, rather than providing implementation details.”

CODING = “Write code in Python that meets the requirements following the plan. Ensure
that the code you write is efficient, readable, and follows best practices.
Remember, do not need to explain the code you wrote.”

REPAIRING= “Fix or improve the code based on the content of the report. Ensure that any
changes made to the code do not introduce new bugs or negatively impact the performance
of the code. Remember, do not need to explain the code you wrote.”

TESTING = “1. Test the functionality of the code to ensure it satisfies the requirements.
2. Write reports on any issues or bugs you encounter.
3. If the code or the revised code has passed your tests, write a conclusion “Code Test
Passed”.
Remember, the report should be as concise as possible, without sacrificing clarity and
completeness of information. Do not include any error handling or exception handling
suggestions in your report.”

Few-Shot Prompting intends to convey to model the task of each stage by example. We sample
four examples from the dataset for prompting. For fairness, we exclude the four examples from
the evaluation and keep all approaches consistent in experiments. The prompt for each stage is as
follows:

ANALYSIS = “
Requirement:
prime_fib returns n-th number that is a Fibonacci number and it’s also prime.
Plan:
1. Create a function to check if a number is prime.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

Self-Collaboration Code Generation via ChatGPT 189:25

2. Generate a Fibonacci sequence.
3. Check if each number in the Fibonacci sequence is prime, decrement the counter.
4. If the counter is 0, return the Fibonacci number.
end

Requirement:
Create a function that takes integers, floats, or strings representing real numbers, and
returns the larger variable in its given variable type. Return None if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
Plan:
1. Store the original inputs.
2. Check if inputs are strings and convert to floats.
3. Compare the two inputs and return the larger one in its original data type.
end

Requirement:
Create a function which takes a string representing a file’s name, and returns ‘Yes’ if the
file’s name is valid, and returns ‘No’ otherwise. A file’s name is considered to be valid if and
only if all the following conditions are met: - There should not be more than three digits
(‘0’-‘9’) in the file’s name. - The file’s name contains exactly one dot ‘.’ - The substring before
the dot should not be empty, and it starts with a letter from the latin alphapet (‘a’-‘z’ and
‘A’-‘Z’). - The substring after the dot should be one of these: [‘txt’, ‘exe’, ‘dll’]
Plan:
1. Check if the file name is valid according to the conditions.
2. Return “Yes” if valid, otherwise return “NO”.
end

Requirement:
This function takes a list l and returns a list l’ such that l’ is identical to l in the odd indicies,
while its values at the even indicies are equal to the values of the even indicies of l, but
sorted.
Plan:
1. Create a list of all the even indices of the given list.
2. Sort the list of even indices.
3. Create a new list that is identical to the original list in the odd indicies, and equal to the
sorted even indices in the even indicies.
end

Requirement:
{x_test}

Plan:
”

CODING = “
Requirement: prime_fib returns n-th number that is a Fibonacci number and it’s also prime.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

189:26 Y. Dong et al.

Plan: 1. Create a function to check if a number is prime. 2. Generate a Fibonacci sequence. 3.
Check if each number in the Fibonacci sequence is prime, decrement the counter. 4. If the
counter is 0, return the Fibonacci number.
Code:

def is_prime(n: int):
if n < 2:

return False
for i in range(2, n):

if n % i == 0:
return False

return True
fib_seq = [1, 1]
counter = n
while counter > 0:

fib_seq.append(fib_seq[-1] + fib_seq[-2])
if is_prime(fib_seq[-1]):

counter -= 1
return fib_seq[-1]

end

Requirement: Create a function that takes integers, floats, or strings representing real
numbers, and returns the larger variable in its given variable type. Return None if the values
are equal. Note: If a real number is represented as a string, the floating point might be . or ,
Plan: 1. Store the original inputs. 2. Check if inputs are strings and convert to floats. 3.
Compare the two inputs and return the larger one in its original data type.
Code:

def compare_one(a, b):
a_original = a
b_original = b
if isinstance(a, str):

a = float(a.replace(',', '.'))
if isinstance(b, str):

b = float(b.replace(',', '.'))
if a > b:

return a_original
elif b > a:

return b_original
else:

return None

end

Requirement: Create a function which takes a string representing a file’s name, and returns
‘Yes’ if the file’s name is valid, and returns ‘No’ otherwise. A file’s name is considered to
be valid if and only if all the following conditions are met: - There should not be more

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

Self-Collaboration Code Generation via ChatGPT 189:27

than three digits (‘0’-‘9’) in the file’s name. - The file’s name contains exactly one dot ‘.’ -
The substring before the dot should not be empty, and it starts with a letter from the latin
alphapet (‘a’-‘z’ and ‘A’-‘Z’). - The substring after the dot should be one of these: [‘txt’, ‘exe’,
‘dll’]
Plan: 1. Check if the file name is valid according to the conditions. 2. Return “Yes” if valid,
otherwise return “NO”.
Code:

def file_name_check(file_name):
if len(re.findall(r'\\d', file_name)) > 3:

return 'No'
if len(re.findall(r'\\.', file_name)) != 1:

return 'No'
if not re.match(r'[a-zA-Z]', file_name.split('.')[0]):

return 'No'
if file_name.split('.')[1] not in ['txt', 'exe', 'dll']:

return 'No'
return 'Yes'

end

Requirement: This function takes a list l and returns a list l’ such that l’ is identical to l in
the odd indicies, while its values at the even indicies are equal to the values of the even
indicies of l, but sorted.
Plan: 1. Create a list of all the even indices of the given list. 2. Sort the list of even indices. 3.
Create a new list that is identical to the original list in the odd indicies, and equal to the
sorted even indices in the even indicies.
Code:

def sort_even(l: list):
even_indices = [x for x in range(len(l)) if x % 2 == 0]
sorted_even_indices = sorted(l[i] for i in even_indices)
result = []
for i in range(len(l)):

if i % 2 == 0:
result.append(sorted_even_indices.pop(0))

else:
result.append(l[i])

return result

end

{x_test}

Code: ”

REPAIRING = “
Requirement: prime_fib returns n-th number that is a Fibonacci number and it’s also prime.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

189:28 Y. Dong et al.

Code:

def is_prime(n):
if n <= 1:

return False
if n <= 3:

return True
if n % 2 == 0 or n % 3 == 0:

return False
i = 5
while i * i <= n:

if n % i == 0 or n % (i + 2) == 0:
return False

i += 6
return True

def prime_fib(n):
if n <= 0:

raise ValueError("n must be a positive integer.")

fib = [0, 1] # Initial Fibonacci sequence
count = 0 # Count of prime Fibonacci numbers

while count < n:
Generate the next Fibonacci number
next_fib = fib[-1] + fib[-2]

Check if the new Fibonacci number is prime
if is_prime(next_fib):

count += 1

Append the new Fibonacci number to the list
fib.append(next_fib)

return fib[-2] # The last prime Fibonacci number

Test Report: After rigorous testing and inspection of the provided code, several issues have
been identified that affect the correct functionality of the program: The function is_prime
checks for prime numbers, but it returns True for 1 and this behavior deviates from the
standard definition where 1 is not considered a prime number. In the function prime_fib,
the starting Fibonacci sequence is [0, 1]. While technically correct, this could result in the
function considering 0 as a potential prime Fibonacci number, which is incorrect. In the
same function, the return statement returns the second-to-last element of the Fibonacci
sequence (fib[-2]), which is not necessarily the nth prime Fibonacci number the function is
supposed to return. The above-mentioned issues need to be addressed to ensure the correct
execution of the program. After these issues are fixed, the code should correctly return the
nth prime number in the Fibonacci sequence.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

Self-Collaboration Code Generation via ChatGPT 189:29

Modified Code:

def is_prime(n: int):
if n < 2:

return False
for i in range(2, n):

if n % i == 0:
return False

return True
fib_seq = [1, 1]
counter = n
while counter > 0:

fib_seq.append(fib_seq[-1] + fib_seq[-2])
if is_prime(fib_seq[-1]):

counter -= 1
return fib_seq[-1]

end

Requirement: Create a function that takes integers, floats, or strings representing real
numbers, and returns the larger variable in its given variable type. Return None if the values
are equal. Note: If a real number is represented as a string, the floating point might be . or ,
Code:

def compare_one(a, b):
if a == b:

return None

if isinstance(a, str):
a = float(a.replace(',', '.'))

if isinstance(b, str):
b = float(b.replace(',', '.'))

if isinstance(a, int) and isinstance(b, int):
return max(a, b)

else:
return float(max(a, b))

Test Report: The testing of the function ‘compare_one‘ in the provided code has revealed
several significant issues: 1. The function does not appropriately handle the case where both
inputs are equal. It returns ‘None‘ instead of returning the equal values. 2. The function
doesn’t retain the original type of the inputs when they are both integers. It converts the
maximum value to a float before returning, which could lead to incorrect type handling in
further operations. 3. If the larger value was originally a string, the function returns a float
or int rather than the original string. Fixing these issues should result in a function that
correctly compares two values, converting strings to floats for comparison if necessary, and
returning the larger value in its original form, or ‘None‘ if they are equal.
Modified Code:

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

189:30 Y. Dong et al.

def compare_one(a, b):
a_original = a
b_original = b
if isinstance(a, str):

a = float(a.replace(',', '.'))
if isinstance(b, str):

b = float(b.replace(',', '.'))
if a > b:

return a_original
elif b > a:

return b_original
else:

return None

end

Requirement: This function takes a list l and returns a list l’ such that l’ is identical to l in
the odd indicies, while its values at the even indicies are equal to the values of the even
indicies of l, but sorted.
Code:

def file_name_check(file_name):
if len(re.findall(r'\\d', file_name)) > 3:

return 'No'
if len(re.findall(r'\\.', file_name)) != 1:

return 'No'
if not re.match(r'[a-zA-Z]', file_name.split('.')[0]):

return 'No'
if file_name.split('.')[1] not in ['txt', 'exe', 'dll']:

return 'No'
return 'Yes'

Test Report: Upon careful examination and testing of the ‘file_name_check’ function, it was
found to perform as expected. The function successfully verifies whether a file name meets
certain criteria: - It contains no more than three digits. - It has exactly one period. - It starts
with a letter before the period. - The extension after the period is one of ‘txt’, ‘exe’, or ‘dll’. If
the file name meets all of these conditions, the function returns ‘Yes’. Otherwise, it returns
‘No’. In conclusion, no issues were found during testing. The ‘file_name_check’ function
has passed all tests and is working as expected. Code Test Passed
Modified Code: ‘file_name_check’ function passed all tests and is working as expected. So
the code has no need to change.
end

Requirement: This function takes a list l and returns a list l’ such that l’ is identical to l in
the odd indicies, while its values at the even indicies are equal to the values of the even
indicies of l, but sorted.
Code:

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

Self-Collaboration Code Generation via ChatGPT 189:31

def sort_even(l: list):
even_indices = [l[i] for i in range(len(l)) if i % 2 == 0]
sorted_even_indices = sorted(even_indices)

l_prime = l.copy()

for i in range(len(l_prime)):
if i % 2 == 0:

l_prime[i] = sorted_even_indices.pop(0)

return l_prime

Test Report: Upon careful examination and testing of the ‘sort_even‘ function in the provided
code, the following issues were discovered: 1. The function sorts elements at even indices in
the list, rather than sorting even numbers themselves. Addressing these issues will result
in a function that correctly sorts all even numbers in the input list while maintaining the
order and position of odd numbers.
Modified Code:

def sort_even(l: list):
even_indices = [x for x in range(len(l)) if x % 2 == 0]
sorted_even_indices = sorted(l[i] for i in even_indices)
result = []
for i in range(len(l)):

if i % 2 == 0:
result.append(sorted_even_indices.pop(0))

else:
result.append(l[i])

return result

end

{x_test}

Modified Code: ”

TESTING = ”
Requirement: prime_fib returns n-th number that is a Fibonacci number and it’s also prime.
Code to test:

def is_prime(n):
if n <= 1:

return False
if n <= 3:

return True
if n % 2 == 0 or n % 3 == 0:

return False
i = 5

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

189:32 Y. Dong et al.

while i * i <= n:
if n % i == 0 or n % (i + 2) == 0:

return False
i += 6

return True

def prime_fib(n):
if n <= 0:

raise ValueError("n must be a positive integer.")

fib = [0, 1] # Initial Fibonacci sequence
count = 0 # Count of prime Fibonacci numbers

while count < n:
Generate the next Fibonacci number
next_fib = fib[-1] + fib[-2]

Check if the new Fibonacci number is prime
if is_prime(next_fib):

count += 1

Append the new Fibonacci number to the list
fib.append(next_fib)

return fib[-2] # The last prime Fibonacci number

Test Report: After rigorous testing and inspection of the provided code, several issues have
been identified that affect the correct functionality of the program: The function is_prime
checks for prime numbers, but it returns True for 1 and this behavior deviates from the
standard definition where 1 is not considered a prime number. In the function prime_fib,
the starting Fibonacci sequence is [0, 1]. While technically correct, this could result in the
function considering 0 as a potential prime Fibonacci number, which is incorrect. In the
same function, the return statement returns the second-to-last element of the Fibonacci
sequence (fib[-2]), which is not necessarily the nth prime Fibonacci number the function is
supposed to return. The above-mentioned issues need to be addressed to ensure the correct
execution of the program. After these issues are fixed, the code should correctly return the
nth prime number in the Fibonacci sequence.
end

Requirement: Create a function that takes integers, floats, or strings representing real
numbers, and returns the larger variable in its given variable type. Return None if the values
are equal. Note: If a real number is represented as a string, the floating point might be . or ,
Code to test:

def compare_one(a, b):
if a == b:

return None

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

Self-Collaboration Code Generation via ChatGPT 189:33

if isinstance(a, str):
a = float(a.replace(',', '.'))

if isinstance(b, str):
b = float(b.replace(',', '.'))

if isinstance(a, int) and isinstance(b, int):
return max(a, b)

else:
return float(max(a, b))

Test Report: The testing of the function ‘compare_one’ in the provided code has revealed
several significant issues: 1. The function does not appropriately handle the case where both
inputs are equal. It returns ‘None’ instead of returning the equal values. 2. The function
doesn’t retain the original type of the inputs when they are both integers. It converts the
maximum value to a float before returning, which could lead to incorrect type handling in
further operations. 3. If the larger value was originally a string, the function returns a float
or int rather than the original string. Fixing these issues should result in a function that
correctly compares two values, converting strings to floats for comparison if necessary, and
returning the larger value in its original form, or ‘None’ if they are equal.
end

Requirement: Create a function which takes a string representing a file’s name, and returns
‘Yes’ if the file’s name is valid, and returns ‘No’ otherwise. A file’s name is considered to
be valid if and only if all the following conditions are met: - There should not be more
than three digits (‘0’-‘9’) in the file’s name. - The file’s name contains exactly one dot ‘.’ -
The substring before the dot should not be empty, and it starts with a letter from the latin
alphapet (‘a’-‘z’ and ‘A’-‘Z’). - The substring after the dot should be one of these: [‘txt’, ‘exe’,
‘dll’]
Code to test:

def file_name_check(file_name):
if len(re.findall(r'\\d', file_name)) > 3:

return 'No'
if len(re.findall(r'\\.', file_name)) != 1:

return 'No'
if not re.match(r'[a-zA-Z]', file_name.split('.')[0]):

return 'No'
if file_name.split('.')[1] not in ['txt', 'exe', 'dll']:

return 'No'
return 'Yes'

Test Report: Upon careful examination and testing of the ‘file_name_check’ function, it
was found to perform as expected. The function successfully verifies whether a file name
meets certain criteria: - It contains no more than three digits. - It has exactly one period. - It
starts with a letter before the period. - The extension after the period is one of ‘txt’, ‘exe’, or
‘dll’. If the file name meets all of these conditions, the function returns ‘Yes’. Otherwise, it
returns ‘No’. In conclusion, no issues were found during testing. The ‘file_name_check’

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

189:34 Y. Dong et al.

function has passed all tests and is working as expected. Code Test Passed
end

Requirement: This function takes a list l and returns a list l’ such that l’ is identical to l in
the odd indicies, while its values at the even indicies are equal to the values of the even
indicies of l, but sorted.
Code to test:

def sort_even(l: list):
even_indices = [l[i] for i in range(len(l)) if i % 2 == 0]
sorted_even_indices = sorted(even_indices)

l_prime = l.copy()

for i in range(len(l_prime)):
if i % 2 == 0:

l_prime[i] = sorted_even_indices.pop(0)

return l_prime

Test Report: Upon careful examination and testing of the ‘sort_even’ function in the
provided code, the following issues were discovered: 1. The function sorts elements at
even indices in the list, rather than sorting even numbers themselves. Addressing these
issues will result in a function that correctly sorts all even numbers in the input list while
maintaining the order and position of odd numbers.
end

{x_test}

Test Report: ”

References
[1] Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and Juhani Warsta. 2017. Agile software development methods:

Review and analysis. arXiv:1709.08439. Retrieved from https://arxiv.org/abs/1709.08439
[2] Chetan Arora, John Grundy, andMohamed Abdelrazek. 2023. Advancing requirements engineering through generative

AI: Assessing the role of LLMs. arXiv:2310.13976. Retrieved from https://arxiv.org/abs/2310.13976
[3] Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang,

Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. 2021. Program synthesis with large language models.
arXiv:2108.07732. Retrieved from https://arxiv.org/abs/2108.07732

[4] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James Grenning,
Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber,
Jeff Sutherland, and Dave Thomas. 2001. Manifesto for agile software development. (2001).

[5] R. Meredith Belbin. 2012. Team Roles at Work. Routledge.
[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan,

Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, TomHenighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In Proceedings of the Advances in
Neural Information Processing Systems (NeurIPS 20), Vol. 33.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

https://arxiv.org/abs/1709.08439
https://arxiv.org/abs/2310.13976
https://arxiv.org/abs/2108.07732

Self-Collaboration Code Generation via ChatGPT 189:35

[7] Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022. CodeT:
Code generation with generated tests. arXiv:2207.10397. Retrieved from https://arxiv.org/abs/2207.10397

[8] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared Kaplan, Harrison
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser,Mohammad Bavarian, ClemensWinter, Philippe Tillet, Felipe Petroski Such, Dave Cummings,Matthias Plappert,
Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss,WilliamHebgenGuss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,
Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021.
Evaluating large language models trained on code. arXiv:2107.03374. Retrieved from https://arxiv.org/abs/2107.03374

[9] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. 2023. Teaching large language models to self-debug.
arXiv:2304.05128. Retrieved from https://arxiv.org/abs/2304.05128

[10] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham,
Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua
Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke,
Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson,
Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan
Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai,
Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou,
Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. 2022. PaLM: Scaling language modeling with pathways. arXiv:2204.02311.
Retrieved from https://arxiv.org/abs/2204.02311

[11] Hyung W. Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa
Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen,
Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao, Yanping Huang, Andrew M. Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned languagemodels. arXiv:2210.11416. Retrieved from https://arxiv.org/abs/2210.11416

[12] Caroline Claus and Craig Boutilier. 1998.The dynamics of reinforcement learning in cooperative multiagent systems. In
Proceedings of the 15th National/10th Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence
(AAAI/IAAI ’98). AAAI Press / The MIT Press, 746–752.

[13] Tom DeMarco and Tim Lister. 2013. Peopleware: Productive Projects and Teams. Addison-Wesley.
[14] Yihong Dong, Jiazheng Ding, Xue Jiang, Zhuo Li, Ge Li, and Zhi Jin. 2023. CodeScore: Evaluating code generation by

learning code execution. arXiv:2301.09043. Retrieved from https://arxiv.org/abs/2301.09043
[15] YihongDong, Xue Jiang, Huanyu Liu, Zhi Jin, and Ge Li. 2024. Generalization ormemorization: Data contamination and

trustworthy evaluation for large language models. arXiv:2402.15938. Retrieved from https://arxiv.org/abs/2402.15938
[16] Yihong Dong, Ge Li, and Zhi Jin. 2023. CODEP: Grammatical Seq2Seq model for general-purpose code generation. In

Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA ’23). ACM,
188–198.

[17] Yihong Dong, Kangcheng Luo, Xue Jiang, Zhi Jin, and Ge Li. 2023. PACE: Improving prompt with actor-critic editing
for large language model. arXiv:2308.10088. Retrieved from https://arxiv.org/abs/2308.10088

[18] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-Tau Yih, Luke
Zettlemoyer, and Mike Lewis. 2022. InCoder: A Generative Model for Code Infilling and Synthesis. arXiv:2204.05999.
Retrieved from https://arxiv.org/abs/2204.05999

[19] GitHub. 2022. Copilot. Retrieved from https://github.com/features/copilot
[20] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin Burns, Samir

Puranik, Horace He, Dawn Song, and Jacob Steinhardt. 2021. Measuring coding challenge competence with APPS. In
Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks (NeurIPS Datasets and
Benchmarks ’21), Vol. 1.

[21] Huggingface. 2023. HuggingChat. Retrieved from https://huggingface.co/chat/
[22] IBM. 2023. Dromedary. Retrieved from https://huggingface.co/ibm/dromedary-65b-lora-delta-v0
[23] Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang, and Ge Li. 2023. Self-planning code generation with large

language model. arXiv:2303.06689. Retrieved from https://arxiv.org/abs/2303.06689
[24] Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. 2020. How can we know what language models know.

Transactions of the Association Computational Linguistics 8 (2020), 423–438.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

https://arxiv.org/abs/2207.10397
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2301.09043
https://arxiv.org/abs/2402.15938
https://arxiv.org/abs/2308.10088
https://arxiv.org/abs/2204.05999
https://github.com/features/copilot
https://huggingface.co/chat/
https://huggingface.co/ibm/dromedary-65b-lora-delta-v0
https://arxiv.org/abs/2303.06689

189:36 Y. Dong et al.

[25] Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2022. Large language models are few-shot testers: Exploring LLM-based
general bug reproduction. arXiv:2209.11515. Retrieved from https://arxiv.org/abs/2209.11515

[26] Jon R. Katzenbach and Douglas K. Smith. 2015. The Wisdom of Teams: Creating the High-Performance Organization.
Harvard Business Review Press.

[27] Takeshi Kojima, Shixiang S. Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. 2022. Large language models are
zero-shot reasoners. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS ’22), Vol. 35.

[28] Guohao Li, Hasan A. A. K. Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. 2023. CAMEL: com-
municative agents for “mind” exploration of large scale language model society. arXiv:2303.17760. Retrieved from
https://arxiv.org/abs/2303.17760

[29] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc Marone,
Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier
Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade,
Armel Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan
Zhang, Nour Moustafa-Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas,
Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey
Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-
Gavitt, Danish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñnoz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. 2023. StarCoder: May the source be
with you! arXiv:2305.06161. Retrieved from https://arxiv.org/abs/2305.06161

[30] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling,
Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun
Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J Mankowitz, Esme
Sutherland Robson, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-level
code generation with alphacode. Science 378, 6624 (2022), 1092–1097.

[31] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. 2023. Pre-train, prompt,
and predict: A systematic survey of prompting methods in natural language processing. ACM Computing Surveys 55,
9 (2023), 1951–195:35.

[32] LMSYS. 2023. Fastchat. Retrieved from https://huggingface.co/lmsys/fastchat-t5-3b-v1.0
[33] LMSYS. 2023. Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality. Retrieved from

https://lmsys.org/blog/2023-03-30-vicuna/
[34] Ian R. McChesney and Seamus Gallagher. 2004. Communication and co-ordination practices in software engineering

projects. Information and Software Technology 46, 7 (2004), 473–489.
[35] Marvin Minsky. 2007. The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human

Mind . Simon and Schuster.
[36] MosaicML. 2023. Introducing MPT-7B: A New Standard for Open-Source, ly Usable LLMs. Retrieved from www.mo-

saicml.com/blog/mpt-7b
[37] H. Penny Nii. 1986. Blackboard Systems. AI Mag. 7 (1986).
[38] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, HuanWang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong. 2022.

Codegen: An open large language model for code with multi-turn program synthesis. arXiv:2203.13474. Retrieved
from https://arxiv.org/abs/2203.13474

[39] OpenAI. 2022. ChatGPT. Retrieved from https://openai.com/blog/chatgpt/
[40] OpenAI. 2023. GPT-4 technical report. arXiv:2303.08774. Retrieved from https://arxiv.org/abs/2303.08774
[41] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini

Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda
Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022. Training language models to follow
instructions with human feedback. arXiv:2203.02155. Retrieved from https://arxiv.org/abs/2203.02155

[42] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda
Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022. Training language models to follow
instructions with human feedback. arXiv:2203.02155. Retrieved from https://arxiv.org/abs/2203.02155

[43] Kai Petersen, Claes Wohlin, and Dejan Baca. 2009. The waterfall model in large-scale development. In Proceedings of
the Product-Focused Software Process Improvement (PROFES ’ 09). F. Bomarius, M. Oivo, P. Jaring, and P. Abrahamsson
(Eds.), Lecture Years in Business Information Processing, Vol. 32. Springer, 386–400.

[44] Laria Reynolds and Kyle McDonell. 2021. Prompt programming for large language models: Beyond the few-shot
paradigm. In Proceedings of the CHI Extended Abstracts. ACM, 3141–314:7.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

https://arxiv.org/abs/2209.11515
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2305.06161
https://huggingface.co/lmsys/fastchat-t5-3b-v1.0
https://lmsys.org/blog/2023-03-30-vicuna/
https://www.mosaicml.com/blog/mpt-7b
https://www.mosaicml.com/blog/mpt-7b
https://arxiv.org/abs/2203.13474
https://openai.com/blog/chatgpt/
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155

Self-Collaboration Code Generation via ChatGPT 189:37

[45] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu,
Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton-Ferrer,
Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas
Usunier,Thomas Scialom, and Gabriel Synnaeve. 2023. Code Llama: Open foundationmodels for code. arXiv:2308.12950.
Retrieved from https://arxiv.org/abs/2308.12950

[46] Nayan B. Ruparelia. 2010. Software development lifecycle models. ACM SIGSOFT Software Engineering Notes 35, 3
(2010), 8–13.

[47] Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2024. An empirical evaluation of using large language models
for automated unit test generation. IEEE Transactions on Software Engineering 50, 1 (2024), 85–105.

[48] Timo Schick, Jane Dwivedi-Yu, Zhengbao Jiang, Fabio Petroni, Patrick S. H. Lewis, Gautier Izacard, Qingfei You, Christo-
foros Nalmpantis, Edouard Grave, and Sebastian Riedel. 2022. PEER: A collaborative language model. arXiv:2208.11663.
Retrieved from https://arxiv.org/abs/2208.11663

[49] Sijie Shen, Xiang Zhu, Yihong Dong, Qizhi Guo, Yankun Zhen, and Ge Li. 2022. Incorporating domain knowledge
through task augmentation for front-end JavaScript code generation. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE ’22). ACM,
1533–1543.

[50] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. 2023. HuggingGPT: Solving AI
tasks with chatGPT and its friends in huggingface. arXiv:2303.17580. Retrieved from https://arxiv.org/abs/2303.17580

[51] Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. 2020. AutoPrompt: Eliciting
knowledge from language models with automatically generated prompts. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP ’20). Association for Computational Linguistics, 4222–4235.

[52] Stephen W. Smoliar. 1991. The society of mind: Marvin Minsky. Artificial Intelligence 48, 3 (1991), 349–370.
[53] Chang-You Tai, Ziru Chen, Tianshu Zhang, Xiang Deng, and Huan Sun. 2023. Exploring chain-of-thought style

prompting for text-to-SQL. arXiv:2305.14215. Retrieved from https://arxiv.org/abs/2305.14215
[54] THUDM. 2023. ChatGLM. Retrieved from https://huggingface.co/THUDM/chatglm-6b
[55] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,

Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-Ferrer, Moya Chen,
Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana
Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie,
Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith,
Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv:2307.09288.
Retrieved from https://arxiv.org/abs/2307.09288

[56] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large language models. arXiv:/2201.11903. Retrieved from
https://arxiv.org/abs/2201.11903

[57] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, and Denny
Zhou. 2022. Chain-of-thought prompting elicits reasoning in large language models. In Proceedings of the Advances in
Neural Information Processing Systems (NeurIPS ’22), Vol. 35.

[58] Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. 2023. Visual
chatGPT: Talking, drawing and editing with visual foundation models. arXiv:2303.04671. Retrieved from
https://arxiv.org/abs/2303.04671

[59] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2022. Practical program repair in the era of large pre-trained
language models. arXiv:2210.14179. Retrieved from https://arxiv.org/abs/2210.14179

[60] Chunqiu S. Xia and Lingming Zhang. 2023. Conversational automated program repair. arXiv:2301.13246. Retrieved
from https://arxiv.org/abs/2301.13246

[61] Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang Wang, and Tao
Xie. 2024. CoderEval: A benchmark of pragmatic code generation with generative pre-trained models. In Proceedings
of the IEEE/ACM 46th International Conference on Software Engineering (ICSE ’24). ACM, 371–37:12.

[62] Eric Zelikman, Qian Huang, Gabriel Poesia, Noah D. Goodman, and Nick Haber. 2022. Parsel: A unified natural
language framework for algorithmic reasoning. arXiv:2212.10561. Retrieved from https://arxiv.org/abs/2212.10561

[63] Tianyi Zhang, Tao Yu, Tatsunori B. Hashimoto, Mike Lewis, Wen-tau Yih, Daniel Fried, and Sida I. Wang. 2022. Coder
reviewer reranking for code generation. arXiv:2211.16490. Retrieved from https://arxiv.org/abs/2211.16490

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2208.11663
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2305.14215
https://huggingface.co/THUDM/chatglm-6b
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2303.04671
https://arxiv.org/abs/2210.14179
https://arxiv.org/abs/2301.13246
https://arxiv.org/abs/2212.10561
https://arxiv.org/abs/2211.16490

189:38 Y. Dong et al.

[64] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zi-Yuan Wang, Lei Shen, Andi Wang, Yang
Li, Teng Su, Zhilin Yang, and Jie Tang. 2023. CodeGeeX: A pre-trained model for code generation with multilingual
evaluations on humaneval-X. arXiv:2303.17568. Retrieved from https://arxiv.org/abs/2303.17568

[65] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy Ba. 2022. Large
language models are human-level prompt engineers. arXiv:2211.01910. Retrieved from https://arxiv.org/abs/2211.01910

Received 6 November 2023; revised 27 April 2024; accepted 10 May 2024

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 189. Publication date: September 2024.

https://arxiv.org/abs/2303.17568
https://arxiv.org/abs/2211.01910

	Abstract
	1 Introduction
	2 Self-Collaboration Framework
	2.1 DOL
	2.2 Collaboration

	3 Instance
	4 Evaluation
	4.1 Experiment Setup
	4.2 RQ1: Self-Collaboration vs. Baselines
	4.3 RQ2: The Effect of Roles in Self-collaboration
	4.4 RQ3: Self-Collaboration on Different LLMs
	4.5 RQ4: The Effect of Interaction
	4.6 RQ5: Analysis for Self-Collaboration
	4.7 RQ7: Case Study

	5 Related Work
	5.1 Multi-Agent Collaboration
	5.2 Instruction and Prompt Engineering
	5.3 Application of LLMs in Various Stages of Software Development
	5.4 Code Generation with Other Stage of Software Development

	6 Discussion and Future Work
	7 Conclusion
	A Preliminary Knowledge
	A.1 Code Generation
	A.2 Software Development
	A.3 Waterfall Model

	B Detailed Settings and Baselines
	C Ablation Study with Roles in Self-Collaboration Code Generation
	D Extended Case Study
	E The Instruction of Baselines Pair Programming
	F The Prompt and Instruction of Baselines without Role-Playing
	References

